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This study introduced a lattice Boltzmann computa t ional  scheme capable of  model ing thermo 

hydrodynamic  flows with simpler equi l ibr ium particle distr ibution function compared with 

other models. The equi l ibr ium particle distr ibution function is the local Maxwel ian  equi l ibr ium 

function in this model,  with all the constants uniquely determined. The characteristics of  the 

proposed model  is verified by calculat ion of  the sound speeds, and the shock tube problem. In 

the lattice Boltzmann method, a thermal fluid or  compressible fluid model  simulates the 

reflection of  a weak shock wave col l iding with a sharp wedge having various angles 0w. 

Theoret ical  results using LBM are satisfactory compared with the experimental  result or the 

TVD.  
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r ' Lattice n o d e  

T " Absolute  temperature 

t ' T ime 

u~ " Fluid velocity 

Greek symbols 
), 

c 

Z 
,t 

P 

G 

z- 

: Coefficient of  specific heats 

: Knudsen number  

: Thermal  conduct ivi ty  

: Second viscosity 

: Viscosity 

: Density 

: Number  of  speeds of  particles 

: T ime increment 

: Relaxat ion parameter 

Col l is ion opera tor  
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Subscripts 
a, fl, 7 : Cartesian coordinate 

1. Introduction 

Compared with the Navier-Stokes-based me- 

thods, the lattice Boltzmann method (LBM) (Mc- 

Namara et al., 1988 ; Rothman et al., 1997 ; Wolf- 

Gladrow, 2000) has several advantages in sim- 

ulating flows with highly complex geometries. 

Due to its cellular automata-based algorithm 

(Frisch et al., 1987) and its simple and efficient 

treatment of wall boundary conditions, simula- 

tions can be efficiently carried out on high per- 

formance vector-parallel computers with very 

high discretization on simple equidistant ortho- 

gonal lattices. Many theoretical and numerical 

studies tackling a variety of physics phenomena 

have been implemented, from shock formation to 

flows in porous media, magneto hydro-dynamics, 

phase separation, and turbulence. 

A significant simplification of the original 

LBM was recently achieved by Chert et a1.(1992, 

1994) and Qian et al. (1992), applying the single 

relaxation time approximation of the Bhatnagar, 

Gross and Krook (BGK) method to the collision 

operator in the lattice Boltzmann equation. In this 

lattice BGK model, the local equilibrium particle 

distribution function is used to recover the Navier- 

Stokes equation. 

In LBM, models for compressible or thermal 

fluids consider the conservation of kinetic energy 

of the particles in the collision stage. They require 

at least up to the third order term of fluid velocity 

in the equilibrium distribution functions. 

Alexander et a1.(1993) presented a two-speed 

model in the two-dimensional hexagonal lattice, 

wherein the equilibrium distribution function is 

expressed as the third order term of fluid velocity. 

f ~/ : A a  + B~cai" u + Ca (c~i" u) 2 + D ~ u  2 
+ E ~  (e~i.u) 3 + F ~ ( e ~ . u )  u 2 (1) 

where o" represents the number of speeds of the 

particles, in this case o ' :  1, 2, and the summation is 

not taken. However, the unknown parameters that 

are expressed by the density and the internal ener- 

gy of the fluid become 14 ; thus, complicated cal- 

culations to determine them must be performed. 

Chen et a1.(1994) has presented a form that has 

a local equilibrium distribution function in the 

particle distribution model for one, two, and three- 

dimensional lattices up to the fourth term of the 

flow velocity. 

Io} _ 2 ( 12 ' 1112 /ph~-Apk+Mpkcp~i'u+Gphu +A~ cpki'u, +Op~c~h~'u, 
(2) +//Pk(ePk~'U/3+R,k(CPk,' U)2U2+ SpJ 

Here, the density and the internal energy also 

express the constants Apk, Mp~, " " ,  St, k that de- 

termine the local equilibrium distribution func- 

tion. The numbers are 32 tbr a two-dimensional 

case and 40 for a three-dimensional case. Like 

Alexander's model, they are not uniquely deter- 

mined. 

In this paper, the present work is different from 

the methods mentioned above, since it presents a 

simpler equilibrium distribution function com- 

pared with that of Alexander's or Chen's model. 

Likewise, the constants appearing in this function 

are uniquely determined. Using the simple model, 

the reflection phenomenon of a weak shock wave 

propagating in the shock tube with a wedge is 

simulated. The result is then compared with the 

TVD scheme and the experimental one. 

2. Numerical  Method 

2.1 Lattice BGK model 
The following lattice Boltzmann equation with 

BGK collision term describes the evolution of the 

distribution fa i ( t ,  r) at each lattice node r, and 

time step t : 

fa , . ( t+  r, r + c ~ ; r ) - f ~ i ( t ,  r)=g2~i. (3) 

where real number fag(t,  r) is the mass of fluid at 

each lattice node r, and time step t, moving in 

direction i with a speed of [ eai l=8 ,  o-=1, 2 ..... 

b, where is the number of speed. The o = 0  speed 

corresponds to the component of the fluid at rest. 

The microscopic dynamics associated with Eq. 

(3) can be viewed as a two-step process of move- 

ment and collision. During the movement step, fag 

(r+cair)  is replaced by f~i(r) .  Therefore, each 
site exchanges mass with its neighbors, i.e., sites 
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connected by lattice vectors ca~. in the collision 

step, the dis tr ibut ion functions at each site relax 

toward a state of local equil ibrium. For  simplici- 

ty, the linear, singe time relaxation model of 

Bhatnagar, Gross, and Krook (BGK) that has 

been widely applied to LBM was used : 

22~= ~ [ f ~ ( t ,  r ) - : ~ ° ~ "  - : ~ ,  t t ,  r ) ] .  (4)  

The collision operator ~r~ conserves the local 

mass, momentum and kinetic energy, while the 

parameter q5 controls the rate at which the system 

relaxes to the local equi l ibr ium of f~] ( t ,  r ) .  

2 .2  L o c a l  e q u i l i b r i u m  d i s t r i b u t i o n  

The local Maxwell ian equi l ibr ium function f~q 
for the kinetic theory is written as : 

P [ (c~-u~)~l(~t=x,y,z)  (5) 
f~q= (2~rR, T)a: ~ exp 2R*T 

where R* is the gas constant,  T the absolute 

temperature, u~ and ca the fluid velocity and the 

molecular  velocity, respectively. Subscript a re- 

presents the Cartesian coordinates. 

The equi l ibr ium function can be obtained at a 

small Mach number  of the flow through trun- 

cation of the Taylor  expansion o f f  eq up to th i rd-  

order in u :  

f~=Ae~C'o[ l - 2Bc~u~ + 2B ~ c~c#u~u~ 

+ BUZ_ 2Bc~u~u~_ 4 Bac~c~cru~u#u~] (6) 
3 

where 

1 1 
A -  (2~rR* T)a:2 '  B =  (2R* T)  " (7),(8) 

The particle velocities are then discretized. These 

constants are determined from the constraints so 

that the Navier-Stokes equat ions are derived from 

the dis tr ibut ion function in Eq. (3). 

The hexagonal lattice (FHP lattice) is consi- 

dered in 2 -D calculat ion together with unit spac- 

ing, wherein each node has six nearest neighbors 

connected by six links. Particles can only reside 

on the nodes and move to their nearest neighbors 

along the links in unit time. There are 13 particles 

consisting of two-speed particles c and 2c, in- 

c luding the rest particle. Thus, the equi l ibr ium 

distr ibut ion function is written as 

f ~ = A~eeC~'~p [ 1 - 2 Bca~ u~ + 2 B 2c,~, c~u~ u~ + Bu ~" 
2 4 a (9) 

- 2Bc~r~u,u - ~ - B  c~,c~c~,u~u~ur] 

where 0"=1 and II correspond the particle speed c 

and 2c. respectively. Likewise, i = 0  corresponds 

the rest particle. 

tbr i = 0 ,  e " c ' a = l  ( ' . '  c , r=0)  

for i#=O, eBC~a=eBC~=eSC' (a  =1 )  
e~C'Cr=eBC~=eB4C2(a=II, c a = 2 c i )  (10) 

The coefficient A~eBCZa=F~ varies from particle 

to particle, Eq. (9) is therefore written as : 

f §~, = Faa[ 1 -2Bc~u~ + 2B2 ca~c~ou, u# + Bu z 

-2Bc~,u~uZ-4B3c~c~c~u~u~u,]  (1 I) 
3 

( 6 = I ,  11,0 i = 0 ,  I . . . . .  6) 

where Fxl=Fl, Fm=FH is written since particle 

numbers  in all directions are the same at zero 

fluid velocity. The constants being determined 

are /3. F0. El, Fn. Actually, the expansion of u 

in the equi l ibr ium distr ibut ion function up to the 

second order sufficiently determines the above 

mentioned 4 constants. The third order term is 

necessary for the energy conservation equation.  

The equi l ibr ium distr ibut ion funct ionf~,  ~ up to 

the second order is written as : 

f ~ = F ~ p I 1 -  2Bc~u ,  + 2BZccr~,c~u~u~+ Bu2]. (l 2) 

The coefficients F a , / 3  are functions of density p, 
internal energy e, and mass, momentum,  and 

internal energy at the coll ision of the particles is 

also conserved. Then,  the relations between the 

dis tr ibut ion functions and the variables of macro- 

scopic fluid are:  

Density: ~.fai=~.f~)=p (13) 
0",i cr, i 

_ _  ( 0 )  - -  Momentum : ~faic,~a--~fei ca~--pu~ (14) 
O',i O',i 

~ 1  ¢ ~ 2 _ x o  I ¢10)C2 1 ¢2..r_~e ( 1 5 )  
E n e r g y :  d ~ , ~ J ~ i c ~ - - d ~ , . 2 . t  a~ a - - 2 ~ "  t~ , 

Using the constraints on the isotropic property of 

the tensor, the parameters of  the equi l ibr ium dis- 

t r ibut ion function is determined as : 
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F0 = 1-4~Zc~(2+5BcZ) 

Ft=_ 9~Zc~ (1 +2BcZ), 1 i I z F n = ~ , - I  +~Bc) (16)~  (19) 

I B=-~ 

2.3 G o v e r n i n g  e q u a t i o n s  

To recover the desired thermal Navier-Stokes 

equations, the discrete lattice Boltzmann equation 

into the continuous space and time form by Tayor 

expanding Eq. (3) on (r, t) up to the second 

order of  flow velocity is translated as : 

1 
8tf ~ + c~a~f ~ +- f  rc~,,c~O~Off ~ + rc~atO~f ~ 

(20) 
1 1 ~0 

+ 5- r~/~r~ = - ~ ( f , r ~ - f ~  ~) 

The subindices a' and /~ represent Cartesian com- 

ponents with summation over repeated subscripts. 

The Chapmann-Enskog procedure is therefore 

employed, assuming the following multi-scale 

expansion for the time and spatial derivatives in a 

small quantity 8:  

~ ~ ~-a~+~9~2, 0~, -~ ~0,, (21) 

where e is the Knudsen number. The distribu- 

tion function is also expanded as:  

f a , = f ~ + f § e q = f ~ ] + e f g ~ + g f ~ , +  "''. (22) 

Substituting of Eq. (21) and Eq. (22) with Eq. 

(20), and taking the terms up to the second order 

of e produces the lbllowing equation : 

3 + ,0, co, _ It ) ( tl Otz) f~i+Ccriaaaf~,+(l . 
z.W/ (23) 

[a,f~)+c,~a,,fg)] = r e  " "  " " '  

Hereafter. this paper used O~+t~=O~. 

2.3.1 E q u a t i o n  o f  c o n t i n u i t y  

Summing up the terms in Eq. (23) with respect 

to produces the following equation : 

( 0, q- ca~aOa) 'Y],f ~=O. (24) 
o - , i  

Substituting Eq. (13) and Eq. (14) with Eq. 

(24), the alternate equation of continuity is writ- 
ten as : 

am+ao(ouo) =0, (25) 

2.3 .2  E q u a t i o n s  o f  m o t i o n  

Multiplying Eq. (23) by particle velocity ca~a 

and summing up o" and i, the equation is changed 

a s  : 

a. i (26) 
[ (a, + caira,) ~'],f~,ca,~,cai~] =0 

# , i  

Considering Eq. (23) and the isotropy of the 

tensors produces the tbllowing equation : 

at (pu~) + ap (pu~u~) = - a~P+ oB 
(27) 

[u( aou, + a.uo) ] + ao (Aa,u,) 

In identifying the transport coefficients in Eq. 

(27) with the corresponding terms in the thermal 

Navier-Stokes equations, the values of pressure 

P,  viscosity ,u and second viscosity /l are deter- 

mined as 

respectively. (28) ~ (30) 

2.3.3  E q u a t i o n  o f  energy 

Multiplying (23) by cZa/2, summing up 0" and 

i, and considering the conditions for the non- 

equilibrium part of the distribution functions 

produces the following equation : 

The first term in Eq. (31) is derived from Eq. 

(15) and is written as:  

I -(0~ z - / 1 2 \  3 , ) ' , ~ / a ,  c a = d t ~ P e + ~ - P U  I (32) 
o', i .~ x ,~ / 

The second term in Eq. (31) must correspond to 

the following equation : 

1 z l c , r ~ c Z 3 J ~ ' = u ~ O a ( p e + P + ~ p u  ) (33) 

Based on the above term, the equilibrium distri- 

bution function f ~  in Eq. (I I) must contain the 

third term of u written as:  

f ~q=Fap[ l-2Bco~u~ + 2BZca~c~uaup+ Bu z (34) 
+ mca~ ua u 2 + nB3ca~ ca~ca~u~ u~ur] 

Determining the parameters m, rt to satisfy Eqs. 



2038 Ho Keun Kang, Ki-Deok Ro, Michihisa Tsutahara and Young-Ho Lee 

(15) and (33) produces the fol lowing equat ion : 

F ~ +  16Fa F~+4FH 
and n =  (35),(36) 

rn= 108c'F~Fn 81c6FiFu" 

Substituting f~,~ with Eq. (31), the equat ion of  

energy is derived as:  

(37) 

+ ao I ozr(¢-1) (c~ou,+ ~u~)u~ +(,-~-)a,u,ao, ] 
The thermal conductivi ty 2" is written as : 

The macroscopic  equat ions are derived and the 

equi l ibr ium distr ibution function for this lattice 

BGK model  f ~ )  is determined. 

Many gases can be represented accurately by 

the fol lowing ideal gas equat ion : 

P = ( y - 1 ) o e  (39) 

where 7 is the adiabatic index of  the gas. Com-  

paring Eq. (28) with Eq. (39) reveals that fol- 

lowing the above formulat ions would produce the 

fol lowing coefficient of  specific 7 value : 

D + 2 (40) 
~ '= D 

Therefore the sound speed Cs in the two-d i -  

mensional  model  presented is written as:  

Cs= v, = (41) 
P 

3. Numerical  Simulation 

3.1 Shock tube problems 
The sound speed is expressed by Eq. (41) as a 

function of  the internal energy, and this expre- 

ssion is confirmed for various values of  the inter- 

nal energy. The flow employed is considered a 

shock tube, in which the two regions are sepa- 

rated initially at the center of  the square duct. The 

number of  the lattice is 400×20.  The left region is 

occupied by higher-pressure gas and the right 

region by lower-pressure  gas, and the separat ion 

is removed suddenly. When the pressure differ- 

ence is very small, sound waves propagate  from 

the center towards both directions. On the other 

Table 1 Comparison between theoretical and 
calculated values of sound speed 

6', el 0, 

0.26 0.26 12.1 

0.30 0.30 12.1 

0.32 0.32 12.1 

0.40 0.40 12.1 

0.50 0.50 12.1 

0.263 0.26 12.0 

0.303 0.30 12.0 

0.404 0.40 12.0 

0.505 0.50 12.0 

Cs Cs 

pl (LBM) (theory) 

12.0 0.72 0.721 

12.0 0.77 0.775 

[2.0 0.79 0.80 

12.0 0.89 0.894 

12.0 0.99 1.0 

12.0 0.72 0.721 

12.0 0.77 0.775 

12.0 0.88 0.894 

12.0 0.98 1.0 

hands, when the pressure difference is large, a 

shock wave runs rightward and the rarefaction 

waves propagate leftward. The  boundary  condi-  

tions on the top and bot tom walls are periodic 

and those on the right and the left walls are slip 

and bounce-back ,  and therefore thermally adia- 

batic conditions.  The sound speeds Cs obtained 

by changing the initial condi t ion  are shown in 

Table  1 and compared with the theoretical values 

in Eq. (41). 

The distances of  the point  where the slope of  

the pressure has maximum value from the center 

at two different times are detected, and the 

propagat ion speed is determined. The calculated 

sound speeds are very compat ible  with the theo- 

retical ones. 

The shock tube problem is described above and 

the pressure relat ionship is expressed as 

27~ 

p, lC /b,- l i42t 

where P2 is the pressure just behind the shock. 

The shock Mach number  M s = U s / c s l  is also 

related to the pressure ratio as 

2~ 

P4 271M~-(7~-1) l_y~i__l~  Ms_M~ 
Pl ?'i -}- 1 

In above equat ion 71----7,=2, then the com- 

parisons are presented in Table  2 between the 

calculated value and the theoretical  ones for vari- 

ous p,/pl  and ex/e4. The  figures shown in this 

table shows that if the difference between the 
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Table 2 Comparison between theoretical and 
calculated values of shock Mach number 

and pressure ratio 

p~/ p, e4/ el 

4.0 1.0 

3.0 1.0 

2.0 1.0 

3.0 1.5 

2.5 1.5 

1.5 1.5 

3.0 2.0 

2.0 2.0 

P2/ Pl P2/ Pl M~ Ms 
(LBM) (theory) (LBM) (theory) 

1.88 1.885 1.28 1.290 

1.66 1.669 1.21 1.225", 

1.39 1.393 1.11 1.138 

1.77 1.864 1.27 1.284 

1.62 1.690 1.21 1.232 

1.25 1.269 1.08 1.096 

1.84 2.010 1.28 1.326 

1.47 1.566 [ 1.16 1.194 

c n . ? P :  

",,]i r. hnpt~Jt,~'t,-I~;'K Ibl~ll t ld, ' t l '~ ~ '~bnd l lh~ t t  

: . . . . .  ~ :. \ t l a l - * , i i p  [pri.tlnld;nl'~. ~.-,anndLlicHt 

Fig. 1 Simulated flow field over a wedge with angle 0w 

; "7- 

internal energies at the initial stage becomes 

larger the error may not be negligible but that if 

the differences si small the error can be negligibly 

small. 

3.2 Shock reflection 

Consider  a planar  incident shock wave at the 

initial state with a Mach number  Ms col l iding 

with a sharp wedge having an angle Ow (Fig. 1). 

A shock reflection phenomenon on the wedge is 

the fundamental  problems of  compressible flows. 

This type of  reflection is simulated in the pro- 

posed model  with the simplified equi l ibr ium dis- 

t r ibut ion function. The  number  of  the lattice is 

1680 × 1040 and the corner  of  the wedge is located 

at (450, 0), with the origin at the left corner. The 

half  angle of  the wedge Ow is from 5 to 25 degree, 

with the d iaphragm located at x----250. The den- 

sity in the lower pressure chamber  is p 1 : 1 2 . 0  and 

p4=25.41 in the high-pressure  chamber.  The in- 

ternal energies at the initial stage are c 1 : c 4 : 0 . 4 .  

The boundary  on the inclined plane has a n o n -  

slip condi t ion considering the equi l ibr ium distri- 

but ion function, with those on the other walls 

having mirrored reflection slip conditions.  For  

the temperature of  the internal energy, adiabatic 

condi t ion is applied. 

Figure  2 shows the result for the half  angle of  

15 degree, wherein this weak shock displays is a 

Von Neumann  reflection (Gabi,  1992). These re- 

sults are consistent with the experimental  results 

(Sasoh et al., 1992) shown in Fig. 3. 

Fig. 2 

._ . _ / "  

Reflection of a shock wave over a wedge 

(Angle of wedge : 15 degree, Ms=l .15)  

Fig. 3 Schilieren photograph of a shock wave over a 

wedge (Sasoh et al., 1992) 

The radius of  curvature o f  the incident shock 

surface is compared with previously reported 

results : T V D  simulat ion and the experiments for 

the same half  angle (Sasoh et al.. 1992). The 

posit ion of  the shock surface is identified by the 

y axis measured perpendicular  to the wedge surface. 

The result presented in Fig. 5 shows a non-d imen-  

sional radius of  curvature and posit ion by the 

distance L~ of  the incident shock frorn the wedge 

front shown in Fig. 4. 
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Y / ~  

L ~  
< Slmck front 

Wedge 

Wedge corner 

Fig. 4 Definition sketch of the shock and wedge 

position 

-3-. i 

._ . - _ - .  

2 
. : . < ,  . . S ; "  ' " ,.", 

, ....... :, j 

ylLs 
" .  ulllCr~lep41){} 

- -  2".\ [1,.I 1711¢ [;i 
- ~ [111.2:/I¢ p ( l l )0  
a : i l : l¢ . , ; Iep  7 5 0  N ":r ' lcr  ;CZh 
h :1111~.'.;~ ¢ ~ 9  ~'kl . . . . .  ~U1Lll h7 ILODI ~'x,' r'~ i 
tl l l l ]y l .~ t t .p  [ 2 % ) 

Fig. 5 Non-dimensional radius of curvature 

The result shows that the maximum of the 

radius of  curvature R grows larger in time. 

However ,  the radius obtained by the present 

method is still a little smaller  than the experi- 

mental result or the T V D  simulation. The differ- 

ence from the T V D  simulat ion is due to the 

Reynolds  number  difference;  in the present cal- 

culation,  the Reynolds  number  is 1.2× 104 . In 

contrast, the Euler equat ion is solved in the T V D  

simulation.  

It is part icularly noted in the calculat ion that 

the curvature y / L ,  in the vicinity of  the wedge 

surface is inverted and smaller  than 0.1. It also 

approaches zero L s / R  as it goes faster, which is 

a drawback of  the reset calculation.  This pheno- 

menon is considered to be due to the Knudsen 

40~ 
Incident 
shock x~ 

= 30C 

.v 

>, 20( 

Fig. 6 

' Be~dni,'lg point ~ _ ~ '  ~ ~- 'InCident 
/ofct~'att,e:P1 . ~ shockwave 

, / 

~ " ~  Maximumct~vatm~e \, 
'\ point:P2 ............... L.5 

\ Wedge 
t i , i , I , , i , 

0 . . . .  1050 1100 1150 

x-direction 

Trajectory of an incidenl shock wave 

Fig. 7 

3O i 

X I X 2 ] 
[ E x p e r i m e n t  " • ] 

~ j  • 1 . 1 3 M  -" :~ 

/9 w(dcgl 

Angles x~ and x2 between the x-axis line and 

trajectories of points P, and Pz. Experimental 

and TVD results are shown by Sasoh et al. 

(1992) 

layer (Cornuber t  et al., 1991), which is a layer 

wherein the state of  the distr ibution function is 

far away from the equi l ibr ium (Tsutahara et al., 

2002) near the solid surface. The state then be- 

comes non-equ i l ib r ium,  with the fluid behavior  

different from that obtained by the Navie r -S tokes  

equations.  This point  should be studied more 

precisely in the future. 

Further  compar ison was made for the shock 

wave shape. First, a point  indicated as /°1 was 

detected wherein the shock starts to curve. Ano-  

ther point  indicated as P2 was also noted wherein 

the curvature reached its maximurn (the radius of  

curvature is min imum) .  The  trajectories of  both 

points were obtained. These trajectories turned 

out to be straight line (Fig. 6), with the angles 

between those lines and the edge surface express- 

ed by Zt and Z2, respectively, to correspond to P1 

and Pz. Figure 7 shows the relat ionship between 

Xb Z2 and the angle of  the wedge Ow and how they 

are in agreement with each other, especially when 
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the wedge angle is large. 

4. Conclusion 

A simplified model with an equilibrium distri- 

bution function is proposed for the thermal lattice 

BGK equation and this model is shown to simu- 

late compressible flows successfully. 

The two-dimensional  weak shock reflection at 

the wedge for various 0w are simulated. The result 

shows that the maximum radius obtained by the 

proposed method is still a little smaller compared 

with the experimental result or the TVD scheme, 

due to the Reynolds number difference. 

The comparison of the radius of curvature at 

various angles indicates that LBM is compatible 

with the experimental result or the TVD scheme. 
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